CG - T2 Introduction to CG

 L:CC, MI:ERSIMiguel Tavares Coimbra
(course and slides designed by Verónica Costa Orvalho)

the beginning: 2D

$1^{\text {st }}$ CG displayed 2D graphics (flat lines, circles, polygons)

Simple arcade games: Pong
Real-time: CG that were animated

pong
 lunar lander

1972
1979

why and how 3D?

3D has 3 dimensions of meassurement

width, height and depth

what is this?

what is this?

This is a 2D image of a drawing of a cube

3D illusion

3D computer graphics are actually 2D images on a flat screen

what makes the cube look 3D?

3D illusion

3D computer graphics are actually 2D images on a flat screen

what makes the cube look 3D?
is perspective or the angle between the lines (illusion)

3D illusion

perspective is not enough

what
 else?

3D illusion

perspective is not enough

CG 12/13-T2 - Introduction to CG

3D illusion

perspective is not enough

color changes, textures, U.PORShadiñg, cólor infensity....

3D illusion

perspective is not enough

perception of a 3D image

color changes, textures, U.PORShadiñg, côlor infensity....

math you might need today

cross product

not commutative, order is important

$$
\left(\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right) \times\left(\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right)=\left(\begin{array}{l}
a_{y} b_{z}-b_{y} a_{z} \\
a_{z} b_{x}-b_{z} a_{x} \\
a_{x} b_{y}-b_{x} a_{y}
\end{array}\right)
$$

math you might need today

cross product

Vector crossproduct(Vector \&v)
\{
Vector vector;
vector. $x=\left(y^{*}\right.$ v. $\left.z\right)-\left(z^{*}\right.$ v. y);
vector. $y=\left(z^{*} v . x\right)-\left(x^{*} v . z\right)$;
vector. $z=\left(x^{*}\right.$ v. y) - (y^{*} v. x);
return vector;
\}

$$
\left(\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right) \times\left(\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right)=\left(\begin{array}{l}
a_{y} b_{z}-b_{y} a_{z} \\
a_{z} b_{x}-b_{z} a_{x} \\
a_{x} b_{y}-b_{x} a_{y}
\end{array}\right)
$$

math you might need today

the plane equation
A plane is defined as:
> a set of points perpendicular to a normal vector $\mathbf{n}=(\mathbf{a}, \mathbf{b}, \mathbf{c})$

$>$ that also contains the point
P0=(x0,y0,z0)
$>$ if a point \mathbf{P} lies on the plane, then
vector $\mathbf{v = P}$-P0 also lies on the plane
$>$ then $\mathbf{n} . \mathbf{v = 0}$ (dot product)
n.v => (x * v.x) $+\left(\right.$ y * v.y)+(z * v.z);

math you might need today

more about vectors

magnitude (length):
$|a|=\operatorname{sqrt}((a x$ * $a x)+(a y$ * $a y)+(a z$ * $a z))$

unit Vector - normalization

1 calculate its length, then,
2 divide each of its (xyz) components by its length.

$$
\begin{aligned}
& x=a x /|a| \\
& y=a y /|a| \\
& z=a z /|a|
\end{aligned}
$$

$$
\begin{aligned}
& \text { magnitued }=\operatorname{sqrt}(9+1+4)=3.742 \\
& x=3.0 / 3.742=0.802 \\
& y=1.0 / 3.742=0.267 \\
& z=2.0 / 3.742=0.534
\end{aligned}
$$

Values between $[0,1]$

terms you must know: the beginning

vertex: 3D point in space
transformation matrix: move vertex around in space
projection matrix: turn 3D coordinates into 2D screen coordinates
transforming points around and creating lines between them we create the 3D illusion
rasterization: drawing or filling the

wireframe

terms you must know: the beginning

rasterization:

filling with colors

terms you must know: the beginning

Shading: varing the color values across the surface (between vertices). Create the effect of light shining on a red cube

terms you must know: the beginning

texture mapping: a picture that we map to the surface of a triangle or polygon. A texture can simulate an effect that could take thousands of triangles.

terms you must know: the beginning

blending: allows mixing different colors together. e.g. create reflections.

U.PORTO

everything comes together

transformation + shading + texture + blending

Summary

- We will try create the illusion of a 3D world using a 2D screen
- Humans mentally build their 3D illusion based on two 2D images (but now we only have one...)
- We need maths
- We need structure: transformation, shading, texture, blending

